M1JK 復習シート 3月度①

途中の式や考え方も書いて提出すること (振替受講者は**登録先の授業**で提出)

		登録講座		会員番号	-	-
_	() 教室	氏名		
	()曜() 限			
		M1JK				

【1】次の問いに答えよ.

$$(1)$$
 $\sum_{k=1}^{n} \frac{1}{(k+2)(k+3)}$ を求めよ.

$$(2)$$
 $\sum_{k=1}^{n} \frac{1}{(k+1)(k+3)}$ を求めよ.

- 【2】次の数列の一般項を求めよ.
 - $(1) 1, 2, 5, 10, 17, 26, \cdots$

 $(2) \ 2, \quad 3, \quad 1, \quad 5, \quad -3, \quad 13, \quad \cdots$

(3) -3, -2, 2, 11, 27, 52, ...

【3】初項から第n項までの和 S_n が次のような数列の一般項 a_n を求めよ.

$$(1) S_n = n^2 - 2n$$

(2) $S_n = 3^n + 1$

【4】次の数列 $\{a_n\}$ の一般項を求めよ.

 $\{a_n\}$: 1, 3, 6, 11, 20, 37, 70, ...

M1JK 復習シート 3月度②

途中の式や考え方も書いて提出すること (振替受講者は**登録先の授業**で提出)

		登録講座	2	会員番号	-	-
-[() 教室	氏名		
	()曜() 限			
		M1JK				

【1】次の漸化式から一般項 a_n を求めよ.

(1)
$$a_1 = 1$$
, $a_{n+1} - a_n = 5$

(2)
$$a_1 = -1$$
, $a_{n+1} = 2a_n$

(3)
$$a_1 = 1$$
, $a_{n+1} = a_n + 2n$

【2】次の漸化式から一般項 a_n を求めよ.

$$(1) \ a_1 = 3, \ a_{n+1} = 3a_n - 4$$

 $(2) \ a_1 = 4, \ a_{n+1} - 2a_n = 1$

【3】次の漸化式から一般項 a_n を求めよ.

(1)
$$a_1 = 1$$
, $a_{n+1} = a_n + 2^n$

(2) $a_1 = 1$, $a_{n+1} = -a_n + 2^n$

【4】次の漸化式で与えられる数列の第n項を求めよ.

(1)
$$a_1 = 2$$
, $a_2 = 3$, $a_{n+2} - 5a_{n+1} + 6a_n = 0$

(2) $a_1 = 1$, $a_2 = 6$, $a_{n+2} - 6a_{n+1} + 9a_n = 0$

M1JK 復習シート 3月度③

途中の式や考え方も書いて提出すること (振替受講者は**登録先の授業**で提出)

	登録講座	<u> </u>	会員番号	-	-
() 教室	氏名		
()曜() 限			
	M1JK				

【1】n を正の整数とする.次の等式・不等式が成り立つことを数学的帰納法を用いて証明せよ.

(1)
$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$$

(2) $2^n > n$

- 【2】 $a_1=2,\ a_{n+1}=\frac{2a_n-1}{a_n}\quad (n=1,\ 2,\ \cdots)$ で定められた数列 $\{a_n\}$ について、次の問いに答えよ.
 - (1) a_2 , a_3 , a_4 , a_5 を求めよ.

(2) 一般項 a_n を推定し、数学的帰納法を用いて証明せよ.

[3]	すべての正の整数 n について,明せよ.	$3^{2n}-2^n$ は 7 で割り切れることを,	数学的帰納法を用いて証

[4]	すべての正の整数 n について,	不等式 $3^n >$	n^2 が成り立つことを,	数学的帰納法を用いて証
	明せよ.			