春期講習 確認テスト

Z会東大進学教室

中2数学

中2東大数学

[1] (1) ①
$$3a - 2(a - b) = 3a - 2a + 2b$$

= $a + 2b$

②
$$\frac{x-3y}{4} + \frac{2(-2x+y)}{3} = \frac{3x-9y-16x+8y}{12}$$
$$= \frac{-13x-y}{12}$$
$$\left(= -\frac{13x+y}{12} = -\frac{13}{12}x - \frac{y}{12}\right)$$

(3)
$$a^2b^2 \div \frac{2}{3}ab^3 \times (2ab^2)^2 = \frac{a^2b^2 \times 3 \times 4a^2b^4}{2ab^3}$$

= $\mathbf{6}a^3b^3$

(4)
$$(x+3)(x-5) = x^2 - 2x - 15$$

(5)
$$(2a-1)(4a^2+2a-3) = 8a^3+4a^2-6a-4a^2-2a+3$$

= $8a^3-8a+3$

$$\begin{cases} x + y + z = 2 & \cdots & 0 \\ 2x + 3y - z = -7 & \cdots & 2 \\ -x + 2y + 4z = 7 & \cdots & 3 \end{cases}$$

$$\boxed{0 + 3 + 5},$$

$$3y + 5z = 9 & \cdots & 4$$

$$\boxed{2 + 3 \times 2 + 3},$$

$$2x + 3y - z = -7$$

$$+) -2x + 4y + 8z = 14$$

$$7y + 7z = 7$$

$$y + z = 1 \cdots & 5$$

$$\boxed{4 - 5 \times 3 + 5},$$

$$3y + 5z = 9$$

$$-) 3y + 3z = 3$$

$$2z = 6$$

$$z = 3$$

$$\boxed{5 + 5},$$

$$y = -2$$

$$\boxed{0 + 5},$$

$$x - 2 + 3 = 2 \qquad \therefore x = 1$$

【2】(1) ア. 1 組の対辺が平行で、その長さが等しくなるので、② イ. 4 つの角がすべて等しくなるので、④

よって, x = 1, y = -2, z = 3

(2) △ABF ≡ △GBF より、AF=GF ···①

∠AFE = ∠AEF (= ∠GFE) より、

AF=AE

よって、AE=FG

また、AE // FG であるから、1 組の対辺

が更行で、その長さが等しいので、関係形 A

また、AE // FG であるから、1 組の対辺 B D G が平行で、その長さが等しいので、四角形 AEGF は平行四辺形 · · · ② ①、② より、

となり合う 2 辺の長さが等しい平行四辺形なので四角形 AEGF はV し形である.

[3] (1) (ア)
$$a = -2$$
, $b = -1$, $c = 3$ を代入して $4 = 1 + 9 - 2 \times (-1) \times 3x$ $4 = 10 + 6x$ $6x = -6$ $x = -1$ (イ) $2bcx = b^2 + c^2 - a^2$ $x = \frac{b^2 + c^2 - a^2}{2bc}$ (2)(ア) $k = -2$, $y = -1$ より (イ) 両辺に y をかけて $\frac{x - (-1)}{-1} = (-2)^2$ $x - y = k^2y$ $-y - k^2y = -x$ $-x - 1 = 4$ $-x = 5$ $-(k^2 + 1)y = -x$ $y = \frac{x}{k^2 + 1}$

A = 100x + 10y + z B = 100y + 10z + x C = 100z + 10x + yとなる. よって、与えられた条件を方程式に表すと、
(各桁の和) = x + y + z = 17

【4】A の百の位,十の位,一の位の数字をそれぞれx, y, z とおくと,与えられた条件より,

$$A + B = (100x + 10y + z) + (100y + 10z + x) = 934$$
$$B + C = (100y + 10z + x) + (100z + 10x + y) = 1348$$

整理して.

$$x+y+z=17 \cdots 1$$

 $101x+110y+11z=934 \cdots 2$
 $11x+101y+110z=1348 \cdots 3$

②
$$\times$$
 10 - ③ \updownarrow 0 , $999x + 999y = 7992$ $\therefore x + y = 8 \cdots$ ⑤

$$4 - 5 \times 10$$
 よ 9 , $y = 3$
∴ $x = 5$, $z = 9$

これらは問題に適する. したがって. A=539

【5】CD の延長上に DG = BF となる点 G をとる。

 \triangle ABF \Diamond \Diamond ADG (() (

正方形のすべての辺は等しいから.

$$AB = AD \cdots 1$$

正方形のすべての角は等しいから.

$$\angle ABF = \angle ADG \cdots (2)$$

また作図より,

$$BF = DG \cdots 3$$

②, ③ より, 2辺とその間の角がそれぞれ等しいから,

 $\triangle \; ABF \equiv \triangle \; ADG$

このとき.

$$\angle AGE = \angle AFB \qquad (\triangle ABF \equiv \triangle ADG)$$

$$= \angle EAD + \angle FAE$$

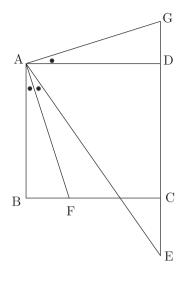
$$= \angle EAD + \angle DAG$$
 $(\triangle ABF \equiv \triangle ADG)$

$$= \angle EAG$$

よって、2つの角が等しいので、AE = GE.

これと
$$GE = DG + DE = BF + DE$$
 (作図) より、

AE = BF + DE (証明終)



[6] \triangle OBE \triangleright △ ODF \triangleright \triangleright \triangleright ODF \triangleright

平行四辺形の対角線はそれぞれの中

点で交わるので

$$OB = OD$$

また.

∠EOB = ∠FOD (対頂角)

∠OBE = ∠ODF (錯角)

 \therefore △ OBE \equiv △ ODF (1 辺両端角相等)

よって、BE = FD、これと BC = AD (平行四辺形の対辺) より、

$$BC - BE = AD - FD$$

$$\therefore EC = AF \cdots \bigcirc$$

また、BE = FD と仮定 BE // FD より、1 組の対辺が平行かつ等しいので、BEDF は平行四辺形

さらに、仮定より対角線が直交しているので、BEDF はひし形.

ひし形の対角線は内角を2等分するので.

$$\angle BEO = \angle DEO \cdots ②$$

A を通り ED に平行な直線と EF の延長との交点を I とする。平行線の錯角は等しいので

$$\angle AIF = \angle DEO \cdots 3$$

平行線の同位角は等しいので

$$\angle AFI = \angle BEO \cdots 4$$

②, ③, ④より

 $\angle AIF = \angle AFI$

2つの角が等しいので AI = AF. これと ① および仮定より

$$AI = AF$$

 $= EC \quad (1) \downarrow b$

= EG (仮定)

これと AI // EG(作図)より、1 組の対辺が平行かつ長さが等しいので AIGE は平行四 辺形.

平行四辺形の対角線は中点で交わるので、AH = HG (証明終)

