2MJSS/2MJS/2MJ

本科1期4月度

Z会東大進学教室

中2選抜東大・医学部数学

中2数学

中2東大数学

1次関数(1) 1章

問題

[1] (1)	x (g)	0	10	20	30	40	50
	$y~({ m cm})$	10	11	12	13	14	15

【2】 (1)
$$y = 0.5x + 10 \left(= \frac{1}{2}x + 10 \right)$$

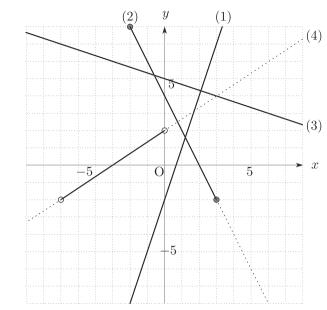
 $x \mathcal{O}$ 変域 $0 \leq x \leq 40, y \mathcal{O}$ 変域 $10 \leq y \leq 30$
(2) $2(x+y) = 20 \downarrow 0, y = -x + 10 (= 10 - x)$
 $x \mathcal{O}$ 変域 $0 < x < 10, y \mathcal{O}$ 変域 $0 < y < 10$
(3) $y = 40x + 300$

【3】(1)
$$x = -2 \text{ のとき}, y = -3 \times (-2) + 5 = 11$$

 $x = 4 \text{ のとき}, y = -3 \times 4 + 5 = -7$
よって、 $y \text{ の増加量は}, -7 - 11 = -18$
また、変化の割合は、 $\frac{-18}{4 - (-2)} = -3$
(2) $x = 0 \text{ のとき}, y = -3 \times 0 + 5 = 5$
 $x = 2 \text{ のとき}, y = -3 \times 2 + 5 = -1$
よって、 $y \text{ の増加量は}, -1 - 5 = -6$
また、変化の割合は、 $\frac{-6}{2 - 0} = -3$

^{(2) 10}g \circ 1cm σ 0 σ 0 \circ , 1g \circ dt $\frac{1}{10}$ cm σ 0 σ . Lt i b r $y = \frac{1}{10}x + 10$ (3) 50g \pm \circ σ 0 \pm s δ 0 \pm ss δ 0 \pm ss δ 0 \pm s(3) δ 0g \pm σ δ 0 \pm s δ 0 \pm ss(3) δ 0g \pm σ δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (3) δ δ δ δ (4) δ δ δ δ (5) δ δ δ δ (6) δ δ δ δ (7) δ δ δ δ (7) δ δ δ δ (8) δ δ δ δ (9) δ δ δ δ < つるしたときの長さは (1) より、15cm なので、 $10 \leq y \leq 15$

[4**]**



[5] (1)
$$y = 4x - 3$$

(2) $y = -\frac{1}{2}x + 4$
(3) $y = -\frac{5}{2}x - 4$

(2)
$$x = 3 \mathcal{O} \xi \mathfrak{F} y = 5 \mathfrak{K} \mathfrak{D} \mathfrak{G}, \ 5 = 3a + b \cdots 1$$

 $x = -1 \mathcal{O} \xi \mathfrak{F} y = 7 \mathfrak{K} \mathfrak{D} \mathfrak{G}, \ 7 = -a + b \cdots 2$
(1), (2) より, $a = -\frac{1}{2}, \ b = \frac{13}{2}$

(3)
$$a = 2 はり, y = 2x + b とおける.$$

 $x = 3 のとき, y = -1 より, -1 = 2 \times 3 + b$
よって, $b = -7$
以上より, $a = 2, b = -7$

(5)
$$a = \frac{-6}{2} = -3 \pm 0, \ y = -3x + b \geq 3 + 5$$
.
 $x = 1 \text{ O} \geq 3, \ y = 5 \pm 0, \ 5 = -3 \times 1 + b$
よって、 $b = 8$
したがって、 $a = -3, \ b = 8$

[7] (1)
$$y = ax + b \geq \exists \leq b$$
,
 $x = 1 \ \mathcal{O} \geq \exists \ y = -2 \ t \exists \ h \land h, \ -2 = a + b \ \dots \dots \square$
 $x = -2 \ \mathcal{O} \geq \exists \ y = -8 \ t \exists \ h \land h, \ -8 = -2a + b \ \dots \dots \square$
(1), (2) $\downarrow \ h, \ a = 2, \ b = -4$
 $y = 2x - 4$
(2) $y = ax + b \geq \exists \leq b,$
 $a > 0 \ \mathcal{O} \geq \exists,$
 $x = 2 \ \mathcal{O} \geq \exists \ y = -4 \ t \exists \ h \land h, \ -4 = 2a + b \ \dots \dots \square$
 $x = 5 \ \mathcal{O} \geq \exists \ y = 8 \ t \exists \ h \land h, \ 8 = 5a + b \ \dots \square$
(1), (2) $\downarrow \ h, \ a = 4, \ b = -12$
 $y = 4x - 12$
 $a < 0 \ \mathcal{O} \geq \exists,$
 $x = 2 \ \mathcal{O} \geq \exists \ y = 8 \ t \exists \ h \land h, \ 8 = 2a + b \ \dots \square$
 $x = 5 \ \mathcal{O} \geq \exists \ y = 8 \ t \exists \ h \land h, \ 8 = 2a + b \ \dots \square$
 $x = 5 \ \mathcal{O} \geq \exists \ y = -4 \ t \exists \ h \land h, \ 0 = -4 = 5a + b \ \dots \square$
(3), (4) $\downarrow \ h, \ a = -4, \ b = 16$
 $y = -4x + 16$

[8] (1) ① BP=x より,
$$y = \frac{1}{2} \times x \times 4$$

整理して, $y = 2x$
② BP=12-x より, $y = \frac{1}{2} \times (12 - x) \times 4$
整理して, $y = 24 - 2x$
(2) ① BP=x より, $y = \frac{1}{2} \times x \times 4$
整理して, $y = 2x$
② 底辺 AB=4, 高さ BC=6 より, $y = \frac{1}{2} \times 4 \times 6 = 12$
よって, $y = 12$
③ AP=16-x より, $y = \frac{1}{2} \times (16 - x) \times 4 = 32 - 2x$
よって, $y = 32 - 2x$

[9] (1) 点 P は, BC 上にある.

$$\triangle EAP = \triangle ABC - \triangle ABP - \triangle EPC だから,$$

 $y = \frac{1}{2} \times 2 \times 2 - \frac{1}{2} \times (x - 2) \times 2 - \frac{1}{2} \times (4 - x) \times 1$
整理して, $y = -\frac{1}{2}x + 2$
(2) 点 P は, CD 上にある.
 $\triangle EAP = \triangle ADC - \triangle PEC - \triangle ADP だから,$
 $y = \frac{1}{2} \times 2 \times 2 - \frac{1}{2} \times (x - 4) \times 1 - \frac{1}{2} \times (6 - x) \times 2$
整理して, $y = \frac{1}{2}x - 2$

【10】(1)
$$0 \le x \le a \text{ obs}, y = b$$

 $x > a \text{ obs}, 32 - 27 = 5(m^3) \text{ bb} 0 \text{ Plack}, 3160 - 2760 = 400(\Pi)$
 $x > \tau, 基本使用量を1m^3 越えるごとに,
 $400 \div 5 = 80(\Pi)$
ずつ加算される. したがって, $y = b + 80(x - a)$
以上より, $y = \begin{cases} b \quad (0 \le x \le a \le 10 \text{ obs}) \\ 80x - 80a + b \quad (x > a \text{ obs}) \end{cases}$
(2) $a = 5 \text{ obs}, (1) \text{ bl}, x > 5 \text{ cbd}, y = 80x - 400 + b$
 $x = 32 \text{ obs}, y = 3160 \text{ bl}, 3160 = 80 \times 32 - 400 + b$
 $x = \tau, b = 1000$
 $1 \text{ cb} \text{ obs}, y = 80x - 400 + 1000$
整理して, $y = 80x + 600$
以上から, 12 月分の料金は, $y = 80 \times 38 + 600 = 3640(\Pi)$$

【11】(1) y = ax - 3は、y 切片が -3の直線だから、A(1, 6) を通るとき、傾きは最大となり、 6 = a - 3 より、 a = 9 B(3, 1) を通るとき、傾きは最小となり、 1 = 3a - 3より、 $a = \frac{4}{3}$ 以上より、 $\frac{4}{3} \leq a \leq 9$

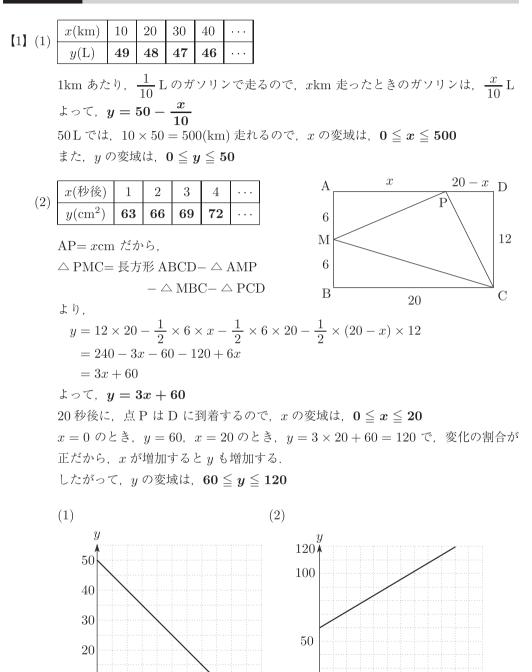
 (2) y = x + b は、傾きが1の直線だから、A(1, 6)を通るとき、y 切片は最大となり、 6 = 1 + b より、 b = 5
 B(3, 1)を通るとき、y 切片は最小となり、 1 = 3 + b より、 b = -2
 以上より、 -2 ≤ b ≤ 5

(3) B, Cを通るとき、aは最大となり、 $a = \frac{5 - (-3)}{2 - (-1)} = \frac{8}{3}$ A, Dを通るとき、aは最小となり、 $a = \frac{3 - (-3)}{2 - (-2)} = \frac{3}{2}$ 以上より、 $\frac{3}{2} \leq a \leq \frac{8}{3}$ B, Dを通るとき、bは最大となり、BD; y = 2x + 1より、b = 1A, Cを通るとき、bは最小となり、AC; y = 2x - 1より、b = -1以上より、 $-1 \leq b \leq 1$

添削課題

10

Ο



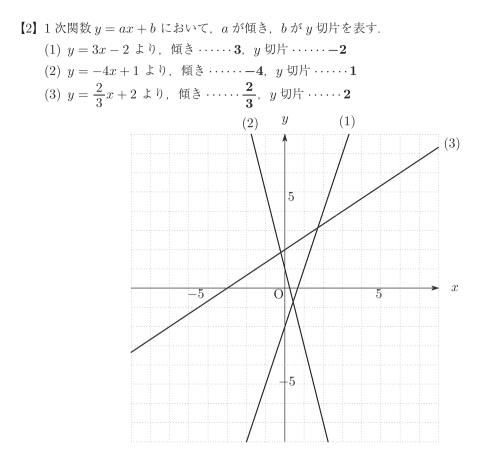
1 - 6

100 200 300 400 500

Ο

10

20



【3】(1) y = -2x + b とおける. x = 1 のとき y = 3 より、3 = -2 + bよって、b = 5以上より、y = -2x + 5

(2) y = ax + b とおける. x = 2 のとき y = 10 より、10 = 2a + b ……① x = -3 のとき y = -5 より、-5 = -3a + b ……② ①、② を a、 b についての連立方程式として解くと、a = 3、b = 4よって、y = 3x + 4<別解> 変化の割合は、 $\frac{10 - (-5)}{2 - (-3)} = \frac{15}{5} = 3$ よって、求める式は、y = 3x + b とおける. x = 2 のとき y = 10 より、10 = 6 + bよって、b = 4したがって、y = 3x + 4 (3) x = -1のとき y = 7, x = 2のとき y = -2 であるから, y = -3x+4 よって、この式に x = -2 を代入すると, y = 10 同様に、x = 0のとき y = 4, x = 1のとき y = 1 以上より、表は次のようになる。

x	-2	-1	0	1	2
y	10	7	4	1	-2

y[4] (1) (10a + b)LA (2) 傾きは 4a なので y = 4ax + k (k は定数) とおける. x = 10 Oとき y = 10a + bなので y = 2ax + b10a + b = 40a + ky = 4ax - 30a + b $\therefore k = -30a + b$ y = 4ax - 30a + by = ax + bと xΟ 10 t

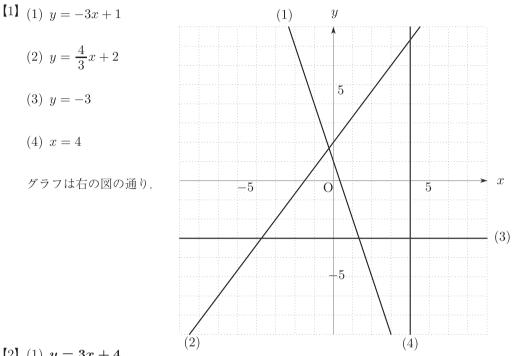
(3)
$$t$$
分後の水の量について式を立てる。
 $4at - 30a + b = 2at + b$
 $2at = 30a$
 $a \neq 0$ より、 $t = 15$

(4) 10 分後の水の量について、
$$10a + b = 40 \cdots$$
①
15 分後の水の量について、 $30a + b = 110 \cdots$ ②
② - ① より
 $20a = 70$
 $a = \frac{7}{2}$
① より、 $b = 5$

小テスト

- [1] (1) x = 1, y = -1
 - (2) x = 1, y = 2
 - (3) x = 2, y = 1
 - (4) x = 4, y = -1
 - (5) x = -3, y = 2

問題



- [2] (1) y = 3x + 4
 - (2) y 切片が -5 より, y = -4x 5
 - (3) 傾きを a とおくと, 直線の式は y = ax + 5 と表せる. ここに x = 3, y = -1 を代 入すると、 $-1 = a \times 3 + 5$. よって、a = -2. 求める直線の式はy = -2x + 5
 - (4) y 切片を b とおくと, 直線の式は y = 2x + b と表せる. ここに x = -3, y = -2を代入すると, $-2 = 2 \times (-3) + b$. よって, b = 4. 求める直線の式はy = 2x + 4
 - (5) 傾きは、 $\frac{-1-3}{3-(-5)} = -\frac{1}{2}$ より、直線の式は $y = -\frac{1}{2}x + b$ と表せる. ここに x = 3, y = -1を代入すると, $-1 = -\frac{1}{2} \times 3 + b$. よって, $b = \frac{1}{2}$. 求める直線の式は $y = -\frac{1}{2}x + \frac{1}{2}$

(6) 傾きは、 $\frac{0-4}{2-0} = -2$ より、y 切片は4 だから、y = -2x + 4

(7) y切片が3より, (0,3)を通る. よって変域より、(6, 1)を通るから、傾きは、 $\frac{1-3}{6-0} = -\frac{1}{2}$ 求める直線の式は $y = -\frac{1}{3}x + 3$

【3】(1) y = 4x - 7 に平行なので、傾きが 4. y 切片が 1 なので、y = 4x + 1(2) 傾きが -2 より、y = -2x + b とおける、点 (-3, 3) を通るので、 $3 = -2 \times (-3) + b$ b = 3 - 6= -3よって. y = -2x - 3(3) 傾きを a とおくと, $y = -\frac{1}{2}x + 3$ に垂直なので, $a \times \left(-\frac{1}{2}\right) = -1$. $\therefore a = 2$. y切片が -2なので、y = 2x - 2(4) 傾き $\frac{2}{3}$ の直線に直交するから, 傾きは $-\frac{3}{2}$ よって $y = -\frac{3}{2}x + b$ とおける. 点 (-1, 2) を通るので, $2 = -\frac{3}{2} \times (-1) + b$ $b = 2 - \frac{3}{2}$ $=\frac{1}{2}$ 以上より、 $y = -\frac{3}{2}x + \frac{1}{2}$ (5) $y = \frac{3}{2}x + 2$ と平行だから、傾きは $\frac{3}{2}$ より、 $y = \frac{3}{2}x + b$ とおける. 点 (4, 1) を通 るので $1 = \frac{3}{2} \times 4 + b$ b = 1 - 6- -5 $\sharp \supset \zeta, \ y = \frac{3}{2}x - 5$ (6) 傾きを a とおくと, y = 2x+3 に垂直なので, $a \times 2 = -1$. $\therefore a = -\frac{1}{2}$. y = 2x+3と y 軸上に交わるのだから、 y 切片は 3. $\therefore y = -\frac{1}{2}x + 3$ (7) (-1, 4), (2, 0) を通る直線は, $y = -\frac{4}{3}x + \frac{8}{3}$ (8, a) を通るから、 $a = -\frac{4}{3} \times 8 + \frac{8}{3} = -8$ <別解> 傾きが等しいことより、 $\frac{0-4}{2-(-1)} = \frac{a-0}{8-2}$ 整理して, $-\frac{4}{3} = \frac{a}{6}$ よって、a = -8(8) 2点 AB の中点は $\left(\frac{-3+(-1)}{2}, \frac{7+3}{2}\right) = (-2, 5).$ また, 直線 AB の傾きは $\frac{3-7}{(-1)-(-3)} = -2.$

よって、求める垂直二等分線の傾きを*a*とすると、*a*×(-2) = -1. ∴ *a* = $\frac{1}{2}$ となる. したがって、もとめる垂直二等分線の*y*切片を*b*とおくと、その式は*y* = $\frac{1}{2}x + b$ とおける、ここに、ABの中点の座標 (-2, 5)を代入すると、5 = $\frac{1}{2}$ ×(-2) + *b*. ∴ *b* = 6.

よって、求める垂直二等分線の式は $y=rac{1}{2}x+6$

- [4] (1) 連立して 3x + 4 = x + 2 2x = -2 x = -1以上より、(-1, 1) (2) 連立して -x - 7 = -2x - 1 x = 6 x = -1以上より、(6, -13)
 - (3) 連立して $-2x + 3 = 5x - \frac{1}{2}$ $-7x = -\frac{7}{2}$ $x = \frac{1}{2}$ $\therefore y = 2$ 以上より、 $\left(\frac{1}{2}, 2\right)$

[5] (1) 2点 (-1, 0), (0, -3) を通る直線は,
$$y = -3x - 3 \cdots \cdots$$
①
また, (6, 3) を通り, 傾きが $\frac{3}{4}$ である直線は, $y = \frac{3}{4}x - \frac{3}{2} \cdots \cdots$ ②
よって, ①, ② を解くと, $x = -\frac{2}{5}$, $y = -\frac{9}{5}$
したがって, 交点は, $\left(-\frac{2}{5}, -\frac{9}{5}\right)$
(2) (3, 3), (-6, -3) を通る直線の傾きは,
 $\frac{3 - (-3)}{3 - (-6)} = \frac{6}{9} = \frac{2}{3}$
 $y = \frac{2}{3}x + b$ とおいて (3, 3) を通ることから,
 $3 = 2 + b$ $\therefore b = 1$ $\therefore y = \frac{2}{3}x + 1 \cdots ①$
(-2, -3), (4, 0) を通る直線の傾きは, $\frac{0 - (-3)}{4 - (-2)} = \frac{3}{6} = \frac{1}{2}$
 $y = \frac{1}{2}x + b$ とおいて (4, 0) を通るので,
 $0 = 2 + b$ $\therefore b = -2$ $\therefore y = \frac{1}{2}x - 2 \cdots$ ②

① と ② より,

$$\frac{2}{3}x + 1 = \frac{1}{2}x - 2$$

 $4x + 6 = 3x - 12$
 $x = -18$
① より、 $y = -12 + 1 = -11$
以上より、(-18, -11)
(3) $y = -\frac{3}{4}x + \frac{9}{2} \ge y = \frac{1}{2}x + 2$ を連立して,
 $x = 2, y = 3$
よって、 $y = \frac{3}{2}x$
(4) $y = 0$ のとき $0 = \frac{2}{3}x - 4$ より、 $x = 6$
(6, 0) を $y = ax + 4$ が通るから、
 $0 = 6a + 4$
 $a = -\frac{2}{3}$

【6】三角形にならないのは、次の2つの場合がある.

- (i) いずれか2つの直線が平行になるとき.
 - ③ が平行になるとき、a=3
 - ②, ③ が平行になるとき, $a = \frac{1}{2}$
- (ii) 3つの直線が1点で交わるとき.

①,②の交点は、
$$\begin{cases} y = 3x - 7\\ y = \frac{1}{2}x - 2 \end{cases}$$
を解くと、
x = 2, y = -1 より、(2, -1)
これが③上にあればよいので、-1 = 2a + 3
よって、a = -2
以上より、a = -2, 1/2, 3

【7】(1)
$$y = -3x + 9 \ge y = \frac{1}{2}x + 2$$
を連立して,
 $x = 2, y = 3$
よって、 $y = \frac{2}{3}x + b$ が(2, 3)を通るから,
 $3 = \frac{4}{3} + b$
 $b = \frac{5}{3}$
以上より、 $y = \frac{2}{3}x + \frac{5}{3}$

(2)
$$y = -3x - \frac{9}{2} \ge y = 4x - 1$$
を連立して,
 $x = -\frac{1}{2}, y = -3$
 $y = -\frac{1}{4}x + b \ge おけるので,$
 $-3 = -\frac{1}{4} \times \left(-\frac{1}{2}\right) + b$
 $b = -\frac{25}{8}$
以上より, $y = -\frac{1}{4}x - \frac{25}{8}$

[8] 求める点の座標を B(p, q) とおくと、直線 AB の傾きは $\frac{q-(-3)}{p-7} = \frac{q+3}{p-7}$ 直線 AB は傾き 2 の直線 ℓ と直交するから、 $2 \times \frac{q+3}{p-7} = -1$ 2q+6 = -p+7 $p+2q = 1 \cdots (1)$ 一方、AB の中点を M とすると M $\left(\frac{p+7}{2}, \frac{q+(-3)}{2}\right)$ これが y = 2x + 3上にあるから、 $\frac{q-3}{2} = 2 \times \frac{p+7}{2} + 3$ q-3 = 2p+14+6 $2p-q = -23 \cdots (2)$ $(1+2) \times 2$ より、p = -9、q = 5以上より、B (-9, 5) [9] y = -x+3, y = 2x-3を連立して

(A)
$$y = -x + 3, y = 2x - 3$$
 を建立して、
 $-x + 3 = 2x - 3$
 $-3x = -6$
 $x = 2$
 $\therefore y = 1$
よって、交点は (2, 1). ここを $y = ax - 5$ が通るのだから、代入して、
 $1 = a \times 2 - 5$
 $2a = 6$
 $a = 3$

【10】(1) AB と CD の傾きが等しいから、

$$\frac{0-2}{3-0} = \frac{4-q}{6-p} \, \sharp \, \vartheta, \quad -\frac{2}{3} = \frac{4-q}{6-p}$$
よって、整理して、 $q = -\frac{2}{3}p + 8$

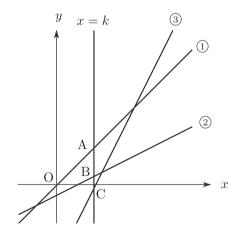
(2) 直線 AD の式を求めると、
$$y = \frac{1}{3}x + 2$$

 $x = 2 \ begin{subarray}{ll} x = 2 \ begin{subarray}{ll} begin{subarray}{ll} x = 2 \ begin{subarray}{ll} x = 3 \ begin{subarray}{ll} x = 2 \ begin{subarray}{ll} x = 3 \ begin{subarray}{ll} x = 4 \ begin{subarray}{ll} x = 3 \ begin{subara$

[12] (1) ①, ② の交点を求めると,

$$(-1, -1)$$

②, ③ の交点を求めると,
 $\left(\frac{7}{3}, \frac{2}{3}\right)$
よって、グラフより,
 $-1 < k < \frac{7}{3}$
<別解>
点 A, B, C の y 座標を比べて,
 $k > \frac{k-1}{2} > 2(k-2)$
この連立不等式を解くと,
 $-1 < k < \frac{7}{3}$
(2) $\frac{k + \frac{k-1}{2}}{2} = 2(k-2)$
整理して,
 $k + \frac{k-1}{2} = 4(k-2)$
よって, $k = 3$



$$\begin{cases} 13 \end{bmatrix} (1) \begin{cases} y = 2x + 4a \cdots (1) \\ y = -x - \frac{1}{2}a + 3 \cdots (2) \\ (1), (2) \downarrow b \\ 2x + 4a = -x - \frac{1}{2}a + 3 \\ 4x + 8a = -2x - a + 6 \\ 4x + 2x = -a + 6 - 8a \\ 6x = -9a + 6 \\ x = -\frac{3}{2}a + 1 \\ (1) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow , \\ y = 2\left(-\frac{3}{2}a + 1\right) + 4a = a + 2 \\ \downarrow \circlearrowright \neg \uparrow, \\ \mathbf{P}\left(-\frac{3}{2}a + 1, a + 2\right) \end{cases}$$

(2) (1) より,
$$x = -\frac{3}{2}a + 1 \cdots 3$$
 $y = a + 2 \cdots 4$
③ より, $a = -\frac{2}{3}x + \frac{2}{3}$
④ に代入して,
 $y = -\frac{2}{3}x + \frac{2}{3} + 2$
整理して, $y = -\frac{2}{3}x + \frac{8}{3}$

添削課題

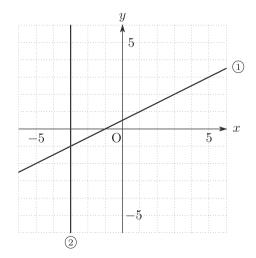
【1】(1) 求める直線は、 $y = 3x + b \ b \ b \ b \ content \ b \ b \ content \ content \ b \ content \ c$

- (2) 傾きを a, y 切片を b とおく. このとき直線の式は y = ax + b と表せる.
 (1,3) を通るので, x = 1, y = 3 を代入して, 3 = a + b · · · ①
 (3,7) を通るので, x = 3, y = 7 を代入して, 7 = 3a + b · · · ②
 ① ② より, -4 = -2a, ∴ a = 2, よって, b = 1
 求める式は y = 2x + 1
- (3) 傾きを a, y 切片を b とおく. このとき直線の式は y = ax + b と表せる.
 (-2, 5) を通るので, x = -2, y = 5 を代入して, 5 = -2a + b · · · ①
 (1, -1) を通るので, x = 1, y = -1 を代入して, -1 = a + b · · · ②
 ① ③ より, 6 = -3a, ∴ a = -2, よって, b = 1
 求める式は y = -2x + 1

(4) グラフより
$$y$$
 切片が -3 , 傾きが $-\frac{3}{2}$ と読み取れるので $y = -\frac{3}{2}x - 3$

- (5) 2点(2,0),(6,3)を通るので、傾きは、 $\frac{3-0}{6-2} = \frac{3}{4}$ よって、 $y = \frac{3}{4}(x-2)$ より、 $y = \frac{3}{4}x - \frac{3}{2}$
- 【2】① $y = \frac{1}{2}x + \frac{1}{2}$ と整理してもよいし, 点 (-5, -2) を通る,傾き $\frac{1}{2}$ の直線 としてもよい.
 - y 軸に平行な直線

以上より、グラフは右の図の通り.

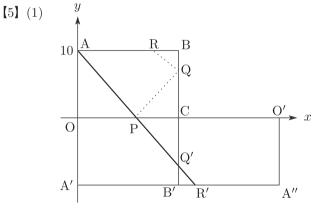


【3】(1) 傾き
$$-\frac{1}{2}$$
, y 切片 2 より,
 $y = -\frac{1}{2}x + 2$

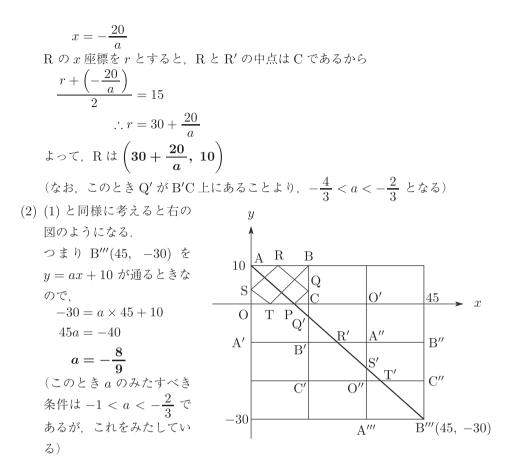
(2) 求める直線の傾きを a とすると、 y = -2x + 3 に直交するから、 $a \times (-2) = -1$ より、 $a = \frac{1}{2}$ よって $y - 5 = \frac{1}{2}(x - 2)$ より、 $y = \frac{1}{2}x + 4$

(3) 求める直線は、y = 3x - 7 に平行だから、傾きは 3 また、 $y = \frac{1}{2}x + 4 \ge y$ 切片が等しいので、y 切片は 4 以上より、y = 3x + 4

[4] ①, ② の交点は (0, 3) で、③ はこの交点を通らない. よって、①, ②、③ が1 点で交わることはない. よって、①, ②、③ のうち、いずれか2 直線が平行となるときを求めればよい.
(i) ① // ② のとき a = -2a より、a = 0
(ii) ② // ③ のとき -2a = 2 より、a = -1
(iii) ① // ③ のとき a = 2
以上より、a = -1, 0, 2
<注> (i) のとき、① と ② は y = 3 となり、一致する.



上の図のように OC および BC に関して領域を折り返せば,点の経路は直線となる. y = ax + 10 に x = 15 を代入して, y = 15a + 10これが Q'の座標なので Q は (15, -15a - 10) y = ax + 10 に y = -10 を代入して, -10 = ax + 10



小テスト

【1】(1)
$$x = -2 \text{ obs}, y = 11$$
, $x = 4 \text{ obs}, y = -7$ だから,
 $(x \text{ oright m} = 1 - (-2) = 6$
 $(y \text{ oright m} = -7 - 11 = -18$
 $(変化の割合) = \frac{y}{x} \text{ oright m} = \frac{-18}{6} = -3$

(2) (1) と同様にして、

$$x = p \, \mathcal{O}$$
とき $y = -3p + 5$, $x = q \, \mathcal{O}$ とき $y = -3q + 5$
だから、
(変化の割合) = $(-3q + 5) - (-3p + 5)$
 $q - p$
のように、一定であることが示せる。

問題

- 【1】(1) 傾きは ℓ と同じく 2 になる. y 切片を b とおくと、直線の式は y = 2x + b となる. ここに B(5,7) の座標を代入. $7 = 2 \times 5 + b$ b = -3よって、求める方程式はy = 2x - 3(2) $M\left(\frac{1+5}{2}, \frac{5+7}{2}\right) = (3, 6)$ (3) 線分 AB の傾きは、 $\frac{7-5}{5-1} = \frac{2}{4} = \frac{1}{2}$ 垂直2等分線の傾きをaとおくと、線分ABと直交するので、 $a \times \frac{1}{2} = -1$ a = -2よって、y 切片を b とおけば、求める直線の式は y = -2x + b とおける、これが M を通るから、Mの座標を代入して、 $6 = -2 \times 3 + b$ b = 12したがって、求める式はy = -2x + 12(4) 連立して. $\begin{cases} y = 2x + 3 \cdots 1 \\ y = -2x + 12 \cdots 2 \end{cases}$ と2より. 2x + 3 = -2x + 124x = 9 $x = \frac{9}{4}$ $\therefore y = \frac{15}{2}$ (5) \triangle AMC と \triangle BMD は 1 辺とその両端の角がそれぞれ等しいので合同 (AM = BM, ∠AMC = ∠BMD = 90°, ∠CAM = ∠DBM(平行線の錯角)より). よって, CM =
 - $\angle AMC = \angle BMD = 90^{\circ}, \angle CAM = \angle DBM(平行線の錯角) より). よって, CM = DM. 対角線がそれぞれの中点で交わるので, ADBC は平行四辺形. さらに, 仮定 より AB<math>\perp$ CD であって, 対角線は直交している. 対角線が直交する平行四辺形はひ し形であるから, 四角形 ADBC はひし形である.

 $x = \frac{1}{4}$

よって、 $C\left(\frac{1}{4}, 8\right)$

 $\therefore y = 4 \times \frac{1}{4} + 7 = 8$

【3】(1) OA の傾きは $\frac{3}{6} = \frac{1}{2}$ なので,平行な直線の傾きはこれと一致. y 切片は 4 である から, $y = \frac{1}{2}x + 4$ (2) u軸に平行で、x座標が6であるから、x = 6(3) (1) と (2) の式を連立して、 $\begin{cases} y = \frac{1}{2}x + 4\cdots \text{(1)} \\ x = 6\cdots \text{(2)} \end{cases}$ ②を①に代入. $y = \frac{1}{2} \times 6 + 4 = 7$ よって、C(6,7) OA//BC, OB//ACより, 四角形 OACB は平行四辺形となる. (4) 傾きをaとおくと, BCの傾きは $\frac{1}{2}$ で, これと直交することから $a \times \frac{1}{2} = -1$ a = -2よって、y切片をbとおくと、y = -2x + bとおける、これが A(6, 3) を通るので、 座標を代入して. $3 = -2 \times 6 + b$ b = 15よって、求める方程式はy = -2x + 15(5) (1) と(4) の方程式を連立すればよい. $\begin{cases} y = \frac{1}{2}x + 4\cdots \text{(1)} \\ y = -2x + 15\cdots \text{(2)} \end{cases}$ Η С (1) と (2) より $\frac{1}{2}x + 4 = -2x + 15$ B(0, 4)A(6, 3) $\frac{5}{2}x = 11$ $x = \frac{22}{5}$ x $\therefore y = \frac{1}{2} \times \frac{22}{5} + 4 = \frac{31}{5}$ $\natural \supset \tau, H\left(\frac{22}{5}, \frac{31}{5}\right)$

[4] (1)

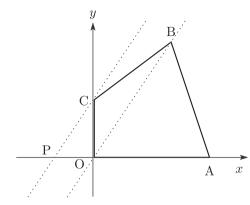
$$\begin{cases} y = x \cdots (1) \\ y = -2x + 18 \cdots (2) \end{cases}$$
(1) = (2) より,
3x = 18
x = 6
(1) より y = 6
よって、A(6, 6)
(2) (2) で y = 0 より, x = 9 ∴B(9, 0)
 $\triangle OAB = \frac{1}{2} \times 9 \times 6 = 27$
(3) OA の中点は (3, 3) であるから, (3, 3) と B(9, 0) を通る直線を求める.
傾きが
 $\frac{0-3}{9-3} = \frac{-3}{6} = -\frac{1}{2}$
より、 $y = -\frac{1}{2}x + b \ge 3x \lor \tau$, B(9, 0) より,
 $0 = -\frac{9}{2} + b$
 $\therefore b = \frac{9}{2}$
 $\downarrow \neg \tau$, $y = -\frac{1}{2}x + \frac{9}{2}$

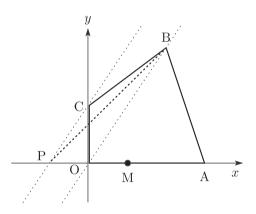
【6】(1) 2 点 A, B を通るから、 y = -2x + 8
(2) 直線 ② に平行で、点 B を通る直線と x 軸との交点が P である. 直線 ② は、y = 2x より、直線 BP は、y = 2x - 12 よって、 P(6, 0)

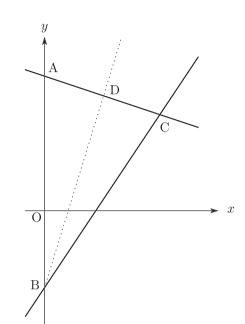
【7】(1) 直線 OB に平行で、点 C を通る直線
と
$$x$$
 軸との交点が P である.
 $\begin{pmatrix} & & \forall x \circ b & \downarrow, PC & // OB & \downarrow, 0 \\ & & OCB = \triangle OPB \\ & & & OCB = \triangle OPB \\ & & & & OCB + \triangle OAB \\ & & & = \triangle OPB + \triangle OAB \\ & & & & = \triangle OPB + \triangle OAB \\ & & & & & = \triangle ABP \end{pmatrix}$
直線 OB は、 $y = \frac{3}{2}x$
よって、直線 PC は、 $y = \frac{3}{2}x + 3$
 $y = 0$ のとき
 $0 = \frac{3}{2}x + 3$
 $\therefore x = -2$
よって、P(-2, 0)
(2) 線分 PA の中点 M の座標は、(2, 0)
四角形 OABC = $\triangle ABP$ だから、
 $\triangle ABP$ の半分の面積をもつ三角形を
四角形 OABC の内部に作ればよい.

 $\triangle ABM = \frac{1}{2} \triangle ABP$ なので、求める直線は BM.

BM の式を求めて、y = 3x - 6

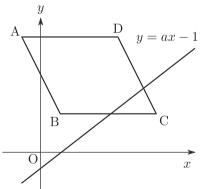




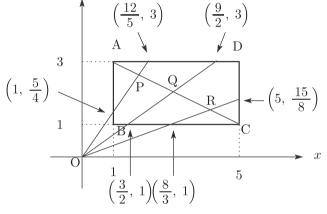


[9] (1) C(6, 2) を通るとき、2 = 6a - 1. ∴ a =
$$\frac{1}{2}$$

A(-1, 6) を通るとき、6 = -a - 1.
∴ a = -7
C を通るときより傾きが大きいと共有点を
持つこと、A を通るときより傾きが小さい
と共有点を持つことに注意して、
 $a \leq -7, \frac{1}{2} \leq a$
(2) 平行四辺形の対角線の交点を通るときであ
る. 対角線の交点は AC の中点なので
 $\left(\frac{-1+6}{2}, \frac{6+2}{2}\right) = \left(\frac{5}{2}, 4\right)$
 $y = ax - 1$ がここを通るので、
 $4 = \frac{5}{2}a - 1.$ ∴ $a = 2$



【10】(1)
$$y = ax$$
 が A を通るとき, a は最大となる.
よって、3 = a つまり, a = 3
 $y = ax$ が C を通るとき, a は最小となる.
よって、1 = 5a より, a = $\frac{1}{5}$
以上より、 $\frac{1}{5} < a < 3$
(2) $y = ax$ が B を通るとき, a は最大となる.
よって、1 = a つまり, a = 1
 $y = ax$ が D を通るとき, a は最小となる.
よって、3 = 5a より, a = $\frac{3}{5}$
以上から、 $\frac{3}{5} < a < 1$
(3)



AC の 4 等分点を A に近いほうから、 P 、 Q 、 R とすると、

P (2, 2.5) Q (3, 2) R (4, 1.5) となる. 上の図より、求める面積は, $\frac{1}{2} \times (5 - \frac{8}{3}) \times (\frac{15}{8} - 1)$ = $\frac{49}{48}$ 【11】(1) 直線 m は y 切片が 2 なので, y = ax + 2 とおくと, (4, 6) を通るので, 6 = 4a + 2a = 1したがって、m; y = x + 2また、直線 n は x 軸と (7, 0) で交わることから、y = b(x - 7) とおけ、(4, 6) を通 るので 6 = b(4 - 7)b = -2したがって、 n ; y = -2x + 14(2) 点 B の x 座標を t とすると, A(t, t+2) より, AB = t + 2四角形 ABCD は正方形だから. BC = AB = t + 2したがって, 点 D の座標は, D(2t+2, t+2). これが直線 n 上にあるので, t + 2 = -2(2t + 2) + 14t+2 = -4t - 4 + 145t = 8 $t = \frac{8}{5}$ よって, 求める1辺の長さは, $AB = BC = \frac{8}{5} + 2 = \frac{18}{5}$ 【12】(1) P(t, 0) とすると、Q(t, 2t+3) より、 PQ = 2t + 3よって、PS = 2t + 3 だから、 $S \cap x$ 座標は、 t + 2t + 3 = 3t + 3 $S \ge R o x 座標は等しく, Q \ge R o y 座標は等しいから,$ R(3t+3, 2t+3)(2) (1) より、 $x = 3t + 3 \cdots (1)$ $y = 2t + 3 \cdots (2)$ (1) $\sharp \vartheta$, $t = \frac{x}{3} - 1$ ② に代入して、 $y = 2\left(\frac{x}{3} - 1\right) + 3$ 整理して、 $y = \frac{2}{3}x + 1$ (3) 直線 ① と x 軸との交点は $\begin{cases} y = 2x + 3 \\ y = 0 \end{cases}$ より, $\left(-\frac{3}{2}, 0\right)$ である. したがって、点 P o x 座標が t o b b. QR = RS = 2t + 3 $TS = 3t + \frac{9}{2}$

より、台形 QRST の面積は、

$$\frac{1}{2} \left\{ (2t+3) + \left(3t + \frac{9}{2}\right) \right\} \times (2t+3)$$

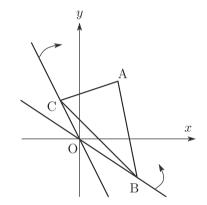
$$= \frac{1}{2} \left(5t + \frac{15}{2} \right) (2t+3)$$
ここで、線分 RS 上の点 U(3t+3, Y) をとると、 △ TSU の面積が台形 QRST の
面積の $\frac{1}{2}$ のとき、
 \triangle TSU = $\frac{1}{2} \left(3t + \frac{9}{2} \right) \times Y$
 $= \frac{1}{2} \times 台形 QRST$
すなわち、
 $\frac{1}{2} \left(3t + \frac{9}{2} \right) \times Y = \frac{1}{2} \times \frac{1}{2} \left(5t + \frac{15}{2} \right) (2t+3)$
両辺を $\frac{1}{2} \left(3t + \frac{9}{2} \right)$ で割ると、
 $Y = \frac{1}{2} \times \frac{5}{3} \times (2t+3)$
 $= \frac{5}{6} (2t+3)$
 $0 < \frac{5}{6} (2t+3) < 2t+3$ より、確かに U は線分 RS 上の点である。
よって、求める直線を $y = a \left(x + \frac{3}{2}\right)$ とすると、この直線は、U $\left(3t+3, \frac{5}{6} (2t+3)\right)$
を通るので、
 $\frac{5}{6} (2t+3) = a \left(3t+3+\frac{3}{2}\right)$
 $= a \left(3t+\frac{9}{2}\right)$
 $a = \frac{5}{9}$
したがって、求める直線の式は、
 $y = \frac{5}{9} \left(x + \frac{3}{2}\right)$
整理して、 $y = \frac{5}{9} x + \frac{5}{6}$

.

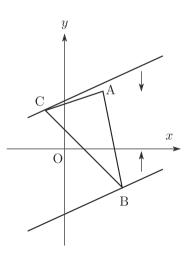
添削課題

【1】(1) ①, ② の連立方程式を解いて、(x, y) = (2, 3)
②, ③ の連立方程式を解いて、(x, y) = (3, -2)
①, ③ の連立方程式を解いて、(x, y) = (-1, 2)
したがって、A(2, 3)、B(3, -2)、C(-1, 2)

(2)
$$y = ax$$
が点 B を通るとき,
B(3, -2) より, $a = -\frac{2}{3}$
同様に, 点 C を通るとき,
C(-1, 2) より, $a = -2$
よって, 求める a の値の範囲は,
 $a \leq -2, -\frac{2}{3} \leq a$



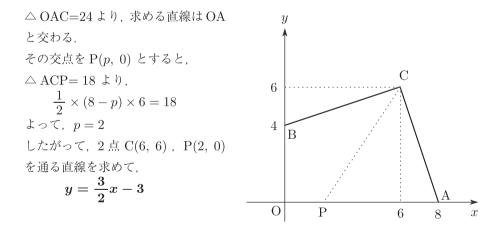
(3)
$$y = \frac{1}{2}x + b$$
 が点 B を通るとき、 $b = -\frac{7}{2}$
同様に、点 C を通るとき、 $b = \frac{5}{2}$
よって、求める b の値の範囲は、
 $-\frac{7}{2} \le b \le \frac{5}{2}$



【2】(1) 傾きは、
$$\frac{0-4}{8-0} = -\frac{1}{2}$$
よって、 y 切片は4だから、 $y = -\frac{1}{2}x + 4$

(2)
$$\triangle ACB = \triangle ADB(面積が等しい) より, AB//CD だから,
直線 CD は, 傾きが $-\frac{1}{2}$ で, 点 C (6, 6) を通るので,
 $y = -\frac{1}{2}(x-6) + 6$
整理して, $y = -\frac{1}{2}x + 9$
点 D は, この直線上にあるので, $x = -3$ を代入して, $y = \frac{3}{2} + 9 = \frac{21}{2}$
よって, y 座標は $\frac{21}{2}$$$

(3) 四角形 OACB
=
$$\triangle$$
 OAC + \triangle OBC
= $\frac{1}{2} \times 8 \times 6 + \frac{1}{2} \times 4 \times 6 = 24 + 12 = 36$



小テスト

- [1] (1) y = -3x + 19
 - (2) y = 5x 6
 - (3) y = 4
 - (4) x = -3
 - (5) y = 2x + 1
 - (6) y = -2x

2MJSS/2MJS/2MJ 中2選抜東大・医学部数学 中2数学 中2東大数学

